Технология цифровой связи

Проектирование цифровой линии

Трение и износ

Правила пропорциональной миниатюризации приводят к факту, что на микроуровне поверхностные силы по сравнению с объёмными имеют большее значение. Из этого следует, что для микроактюаторов трение имеет очень большое значение. Кроме того, из-за своей маленькой массы микромеханические элементы обладают малой силой инерции, что ведёт к высоким динамическим характеристикам, и следовательно они часто работают с высокой рабочей частотой и скоростью.

С одной стороны трение ведёт к потерям, которое является причиной ухудшения функционирования элементов, с другой стороны трение приводит к износу, который негативно воздействует на функциональное поведение и ведёт к ускоренному старению и, в конечном счёте, поломке компонента. Трение является ключевым фактором, который определяет не только эффективность, но и долговечность. Однако трение не всегда сопровождается износом, возможно трение и без износа.

Трение - это явление, воздействующее на поверхностный слой материала, и практически не затрагивающее объёмные характеристики. Это результат взаимодействия контактных областей поверхностей. Важные факторы, влияющие на величину трения: состояние поверхности, поверхностная топология и взаимодействующие материалы. По сравнению с традиционным машиностроением в микросистемах появляется трение твердых тел (сухое трение). Для микромоторов сила поверхностного натяжения настолько велика, что существенно влияет на их функционирование. Поэтому в качестве подшипников скольжения используют подшипники сухого трения, которые, однако, могут быть снабжены молекулярными смазочными плёнками для уменьшения трения и износа. В этом случае характеристики смазки и контактной поверхности становятся главными факторами. Характеристики материалов для смазочных плёнок молекулярной толщины изменяются. Следует заметить, что на сегодняшний день ещё не существует общепринятых методов применения молекулярных плёнок толщиной в несколько нанометров. В этом случае шероховатость поверхности имеет более высокую важность, чем толщина используемой в микросистемах плёнки, которая лежит в пределах от нескольких десятков до нескольких сотен нанометров.

Классическая инженерная модель макроскопического трения имеет следующие существенные характеристики:

1. Сила трения зависит только от нормальной силы FN и всегда действует в направлении противоположном направлению движения.

2. Сила трения не зависит от величины поверхности соприкосновения.

3. Сила трения не зависит от скорости скольжения.

4. Сила трения покоя всегда больше силы трения движения.

5. Силы трения зависят только от двух материалов, которые скользят друг по другу.

Следующая формула, названая законом Кулона – Амонтона, выражает эти соотношения: F1=μFN, где F1и FN - это тангенциальная и нормальная составляющая силы и μ - кинетический коэффициент трения. Некоторые коэффициенты сухого трения скольжения μ для различных комбинаций материалов представлены в таблице.

материал

μ

материал

μ

алюминий/алюминий

1,0-1,4

тефлон/сталь

0,04

никель/никель

0,53-0,8

Al2O3/Al2O3

0,4

сталь/сталь

0,42-0,57

кремний/Al2O3

0,18

алмаз/алмаз

0,1-0,15

сталь/сапфир

0,15

медь/медь

1,2-1,5

никель/вольфрам

0,3

Перейти на страницу: 1 2


Другое по теме:

Импульсный блок питания на базе БП ПК Тема «Импульсный блок питания на базе БП ПК» Предлагаемое устройство помимо неплохих технических характеристик, привлекательно тем, что за его основу взят импульсный блок питания отслужившего свой срок IBM-совместимого персонального компьютера ...