Цель микроактивации - это получение силы, которая могла бы производить механическое перемещение. Следовательно, разные принципы получения активации могут быть оценены согласно их работоспособности, т.е. возможности использования механической энергии. По сравнению с электромагнитным преобразованием энергии, которое преобладает в традиционной инженерии двигательных механизмов, в микроактивации можно использовать множество разнообразных принципов, которые не имело смысла использовать по функциональным или по ценовым характеристикам в макротехнологии.
Начнём с фундаментального отношения: изменение накопленной энергии системы W является причиной появления силы F:
Если запас энергии изменяется между двумя состояниями W1 и W2, мы получаем:
Если в дальнейшем предположить, что одно из двух состояний энергии равно нулю, тогда получаемая сила становится прямо пропорциональной накопленной энергии: F ~ W.
По этой причине, накопленная энергия и/или плотность энергии имеет ключевое значение для оценки работоспособности любого актюатора. Так как любое преобразование энергии связано с потерями, то и работоспособность также пропорциональна коэффициенту полезного действия η, с которым одна форма энергии может быть преобразована в другую. Мощность и работоспособность системы характеризуется также временем, которое необходимо для получения и израсходывания запаса энергии. Этот временной интервал может быть оценен по временной константе, которая является характерной для конкретного принципа активации. Решение, какой принцип активации использовать, должно приниматься, учитывая достижимую плотность энергии, скорость изменения состояния (временная константа τ) и эффективность использования энергии η. В зависимости от этих величин мощность системы можно выразить следующим образом:
Следует заметить, что запас энергии увеличивается с увеличением объёма, таким образом, мы имеем третью степень величины, которая характеризует размер λ, (например, м3) а когда мы имеем дело с силой, то у нас вторая степень (м2). Однако, так как в некоторых важных случаях достижимая плотность энергии также зависит от размера, то эта зависимость - третья степень величины характеризующей размер - не всегда правильна. Для микросистем это приводит к такому важному факту: станут привлекательными для использования те принципы преобразования энергии, которые не соответствуют макродиапазону. Вообще связь между силой и величиной характеризующей размер может быть описана соотношением F~λn. Типичные значения показателя степени n для разных принципов преобразования энергии сведены в таблице.
Эффект | Плотность энергии | Пересчёт силы F~λn с n= | Константа времени | КПД η |
Пьезоэлектрический | 2 · 105 | 2 | << мех | 0,3 |
Электромагнитный | 105 | от 2 до 4 | << мех | <0,01 |
Электростатический | 104 | 2 | << мех | 0,5 |
Биметаллический | 106 | 2 | <50 | 10-4 |
Термопневматический | <5 · 105 | 2 | 10 | 0,1 |
Сплавов, запоминающих форму | 3,5 · 105 | 2 | <50 | 0,01 |
Другое по теме:
Делители мощности на микрополосковой линии В настоящее время область применения радиоэлектронных средств расширяется, комплексы радиосистем становятся все более сложными, это полностью относится и к радиотехнике СВЧ диапазона. В связи с расширением физических возможностей радиоэлект ...