Заданный сигнал был представлен отсчетами, идущими с заданным интервалом. Такая выборка содержит полную информацию о передаваемом сигнале и сама представляет источник информации. Выше было определено количество выборок для одного из сигналов.
Таким образом, выборки это алфавит источника информации и вероятности букв этого алфавита равны друг другу. Такой источник имеет ряд информационных характеристик: количество информации в знаке, энтропию, производительность, избыточность. В дальнейшем для курсового проекта будет интересна производительность, которая характеризует скорость работы источника и определяется по следующей формуле:
, (5.1)
где - энтропия алфавита источника;
- среднее время генерации одного знака алфавита.
Рассматривая принципы и предельные возможности непосредственного согласования дискретного источника сообщений с непрерывным каналом связи, следует напомнить, что в непрерывном канале надо знать плотности распределения случайных процессов сигналов, помех и их же условные плотности распределения. Это понятие вводится при моделировании канала связи и с точки зрения передачи сообщений нет большого противоречия в том, что источник принят дискретным, а канал непрерывен.
Полоса пропускания канала должна быть достаточной для прохождения спектра модулированного сигнала. Величина была определена в параграфе 4.3.
Предельные возможности согласования дискретного источника с непрерывным каналом определяются теоремой Шеннона, которая аналогично звучит в случае дискретного источника и дискретного канала.
Теорема Шеннона: если дискретные сообщения, выдаваемые дискретным источником с производительностью можно закодировать так, что при передаче по Гауссову каналу с белым шумом, пропускная способность которого превышает , то вероятность ошибки может быть достигнута сколь угодно малой.
При определении пропускной способности канала статистические законы распределения помехи, сигнала, и суммы сигнала и помехи - нормальные законы с соответствующими дисперсиями , и .
Пропускная способность гауссова канала равна:
, (5.2)
где - частота дискретизации;
- мощность помехи.
Мощность помехи определяется по заданной спектральной плотности мощности (дано в задании на курсовой проект) и полосе частот модулированного сигнала :
, (5.3)
В дальнейшем для курсового проекта будет интересна производительность, которая характеризует скорость работы источника и определяется по следующей формуле:
, (5.4)
где - энтропия алфавита источника, бит/с;
- среднее время генерации одного знака алфавита, с.
, бит/с
По этим формулам, пользуясь теоремой Шеннона , надлежит определить , обеспечивающую передачу по каналу.
Мощность сигнала обеспечивающая передачу по каналу:
Другое по теме:
Методы расчета цифровых БИХ-фильтров и вид целевой функции Непрерывно развивающаяся цифровая техника, увеличение скорости вычислений и номенклатуры выполняемых операций приводит к широкому внедрению различных методов цифровой обработки сигналов в радиоэлектронных системах. Применение этих ...