Технология цифровой связи

Проектирование цифровой линии

Краткое математическое описание методов расчёта

Цифровой фильтр полностью описывается своим разностным уравнением:

(1)

Для нерекурсивного цифрового фильтра и уравнение принимает вид:

(2)

Зная коэффициенты разностного уравнения, можно легко получить выражение для передаточной функции фильтра (для НЦФ):

(3)

Для образа выходного сигнала НЦФ справедливо выражение

, (4)

где – z-преобразования выходного и входного сигналов фильтра.

Зная выражение (4) и учитывая, что z-преобразование функции единичного скачка равно 1, можно получить выражение для z-образа импульсной характеристики :

(5)

Из (5) следует, что отсчеты импульсной характеристики НЦФ численно равны коэффициентам разностного уравнения НЦФ, а сама импульсная характеристика и передаточная функция связаны парой z-преобразований (прямым и обратным).

Заменив в (4) z на , получим комплексную частотную характеристику:

(6)

Импульсная характеристика и комплексная частотная характеристика связаны парой преобразований Фурье:

(7)

(8)

Из комплексной частотной характеристики можно получить выражения для АЧХ и ФЧХ:

(9)

(10)

Во все вышеприведённые формулы входит интервал квантования . Чтобы от него избавиться, частоту обычно нормируют. Это можно сделать с помощью замены:

(11)

Так как интервал определения , то интервал определения . Исходными данными для проектирования фильтра является его АЧХ. Как правило, в зонах неопределённости АЧХ некоторым образом доопределяют с тем, чтобы избежать явления Гиббса («выбросы» характеристики в точках разрыва первого рода – «скачках»). В простейшем случае доопределить АЧХ можно линейным законом. В этом случае АЧХ проектируемого полосового фильтра будет выглядеть таким образом.

Аналитически АЧХ будет записываться в виде:

(12)

При проектировании часто полагают, что ФЧХ фильтра является линейной. В показывается, что в этом случае импульсная характеристика фильтра является либо симметричной (), либо антисимметричной (). Учитывая, что порядок фильтра может быть чётным и нечётным, существует четыре вида ИХ с линейной ФЧХ:

1. N – нечётное, ИХ – симметричная

2. N – чётное, ИХ – симметричная

3. N – нечётное, ИХ – антисимметричная

4. N – чётное, ИХ – антисимметричная

цифровой фильтр выборка частотный


Другое по теме:

Суммирующий счетчик 1) Используя параметры эквивалентного логического элемента, разработанного в предыдущем КП по курсу «Компьютерное моделирование интегральных приборов», спроектировать схему триггера с динамическим управлением (фронтом или срезом синхросигнала) в ...