Технология цифровой связи

Проектирование цифровой линии

Измерение частоты и длины волны

В состав гетеродинных частотомеров входят следующие основные элементы (рис. 5.3): блок формирования калибрационных меток 10 и 1 Ггц, гетеродин высокочастотного тракта с выносной смесительной головкой, двухканальное приемно-усилительное устройство, осциллографический индикатор, источник питания.

Опис : Scan0004

Рис. 5.3. Блок-схема гетеродинного частотомера:

1 - выносной смеситель сигнального канала; 2 - гетеродин двухканальное приемное устройство; 4 - смеситель калибрационного канала; 5 - кварцевый калибратор; 5 - видеоусилитель; 7 - осциллографический индикатор; 8 - генератор развертки; 9 - генератор пилообразного напряжения модуляции гетеродина; 10 - блок формирования подвижной сетки калибрационных частот.

Интерференционный метод измерения длины волны

Ранее уже было отмечено, что применению металлических волноводов в диапазоне субмиллиметровых волн препятствуют сложность их изготовления из-за малых размеров и чрезмерно большие погонные затухания. Это обусловило развитие теории и практики лучевых квазиоптических волноводов различного типа. Одновременно изменились конструкции оптических резонаторов (интерферометров) и дифрактометров, которые применялись в оптическом и миллиметровом диапазонах для быстрого изменения длины волны сигналов.

При повышении частоты сигналов, генерируемых радиотехническими методами, их свойства все более приближаются к свойствам излучений оптического диапазона. Поэтому вполне естествен возникший вновь интерес к оптическим методам измерений в диапазоне субмиллиметровых волн. Одним из них является интерференционный метод, сущность которого заключается в следующем. При сложении двух колебаний

Asin(wt — bx)

и Asin(wt — bx +bx0)

одинаковых по амплитуде и частоте, результирующие колебание

2Asin(wt — bx +bx0)cos(bx0/2)

будет иметь амплитуду 2Acos(bx0/2).

Максимум амплитуды этого результирующего сигнала имеет место всякий раз, когда аргумент

bx0/2=kp,

а минимум амплитуды отмечается при

bx0/2=(2k + 1)*p/2.

Здесь k - целое произвольное число, включая нуль. Иными словами, колебания к приемнику приходят по двум путям разной длины. Для максимума сигнала разность хода волн определяется из соотношения x0=kl, а при минимуме из x0=(2k + 1)*l/2.

Таким образом, для получения двух соседних максимумов или минимумов необходимо изменить разность хода двух волн на одну длину волны. Если в миллиметровом диапазоне интерферирующие лучи можно пропустить внутри металлического волновода, то в субмиллиметровом диапазоне интерферометры, или оптические резонаторы, работают в квазиоптических волноводных линиях передачи и практически повторяют классические устройства оптического диапазона.

Дифракционный метод измерения длины волны

Рассматривая оптические методы измерения длины волны в диапазоне субмиллиметровых волн, следует остановиться на использовании здесь явления дифракции на различных телах.

В оптическом диапазоне дифракционные спектрометры широко применяются при построении различных спектральных приборов, измеряющих как длину волны сигнала, так и распределение энергии по различным составляющим. В силу того, что свойства излучения субмиллиметрового диапазона близки к свойствам световых колебаний, естественно было применить уже известные принципы и схемные решения для измерений длины волн. Оказалось возможным создать дифракционные решетки, имеющие разрешающую способность, близкую к разрешающей способности интерферометров Фабри-Перо.

Рассмотрим основные дифракционные волномеры, описания которых появились в литературе в различное время.

Опис : Scan0005

Рис. 5.4 Блок-схема дифрактометра с поворотной проволочной или ленточной решеткой:

1 - лучевой волновод; 2 - дифракционная решетка; 3 - фокусирующая линза; 4 - гидеодетектор; 5 - видеоусилитель с индикатором; 5 - механизм отсчета углового положения решетки и приемника; 7 - индикаторный прибор.

На рис. 5.4 изображена блок-схема прибора с проволочной или ленточной дифракционной решеткой. Исследуемый сигнал с помощью квазиоптической линии передачи 1 подводится к поверхности дифракционной решетки 2, расположенной по отношению к оси волнового пучка под произвольным известным углом 8. После прохождения через решетку сигнал оказывается разложенным на несколько составляющих, соответствующих дифракционным спектрам различного порядка. Поворачивая вокруг оси решетки приемное устройство 3, определяются углы, под которыми имеют место дифракционные максимумы. Для четкой индикации принятый сигнал усиливается и индицируется либо стрелочным прибором, либо самописцем. В последнем случае поворот приемного устройства вокруг решетки и запись на ленте должны быть жестко синхронизированы между собой. Направления прихода энергии к решетке и приема дифрагированного поля связаны между собой следующим соотношением: Перейти на страницу: 1 2 3 4


Другое по теме:

Алгоритмы сбора и предварительной обработки измерительной информации Тема контрольной работы "Алгоритмы сбора и предварительной обработки измерительной информации" по дисциплине "Измерительные информационные системы (ИИС)". Программно-математическое обеспечение ИИС является не менее важ ...