Технология цифровой связи

Проектирование цифровой линии

Выбор типа модуляции

При создании навигационных инерциальных приборов, например, микромеханических акселерометров и датчиков угловой скорости, важно добиться высокой чувствительности. Сегодня приборостроители часто решают эту задачу путем уменьшения жёсткости подвеса подвижных частей прибора, что, как правило, влечет за собой сокращение диапазона измерений и понижение его точности Для решения этой проблемы разработчики используют создание резонансных режимов колебаний с амплитудной модуляцией (АМ) сигнала. Однако изучение построенных на этом принципе приборов, а также теоретическое и экспериментальное исследование таких режимов показывают, что существенного успеха в достижении повышения точности высокочувствительных приборов достигнуто не было

Частотная (ЧМ) или временная модуляция (ВМ) сигнала, обеспечивают большее количество информации, полученной в процессе измерения, что приводит к расширению диапазона измерения и повышению точности. Одним из вариантов перехода к ЧМ или ВМ является режим автоколебаний. Сравнение количества информации, получаемого при различных видах модуляции входного сигнала, показано на рисунке 2.1

Рисунок. 2.1 - Информационная способность сигналов с различными типами модуляции

Получение информации в процессе измерения закономерно связано с поступлением некоторого количества энергии на вход ЧЭ, величина этой энергии и её соотношение с энергетическим уровнем помех определяет количество информации

При одной и той же энергии сигнала (Pt) ВМ обеспечивает большее число достоверно различимых градаций измеряемого процесса (q), её негэнтропия выше, чем при АМ. При потреблении от объекта измерения той же мощности и при той же затрате времени при использовании ВМ может быть получена в 6 раз большая точность измерений, или при той же точности могут быть в 36 раз понижены потребление мощности или затрата времени.

Еще одним важным преимуществом ВМ является наличие высокоточных образцовых мер времени. Так как большинство измерительных устройств предназначено для относительных, а не абсолютных измерений, то практический предел реализации возможностей того или иного типа входного процесса, помимо затрат времени на измерение, определяется пределом точности образцовой меры, по которой может быть проградуирован и аттестован прибор. В случае АМ практическая точность образцовых мер электрического напряжения, которые могут быть использованы в приборе, ограничена пока значениями погрешности 0,02-0,01%. Образцовые меры времени в виде генераторов с кварцевой стабилизацией обеспечивают достижение погрешности порядка % (10-7 - 10-8 с).

ЧМ сигнала отличается от AM и ВМ другим соотношением между информацией и энергией. Если при AM и ВМ q пропорционально , то при ЧМ оно почти пропорционально Pt. Это обеспечивает достижение при ЧМ требуемой точности не путем дополнительной затраты времени или потребления, а одновременной экономией этих затрат по сравнению с АМ примерно в десятки раз.

Таким образом, для улучшения характеристик рассматриваемого типа приборов необходимо использовать новые физические принципы построения, реализующие ВМ или ЧМ сигнала, формирующего первичную измерительную информацию.

Одним из таких физических принципов является использование в электромеханических приборах компенсационного типа режима автоколебаний.


Другое по теме:

Разработка арифметико-логического устройства, выполняющего операции сложения и вычитания в прямом двоичном коде Логические устройства, работающие с цифровым сигналом получили широкое применение в электронике. Стали развиваться науки связанные с цифровыми устройствами: «Цифровая схематехника», «Цифровые автоматы». Основой всех цифровых устройств являются ...