Задание:
1) Найти передаточные функции импульсной САУ: W*(z) разомкнутой системы, Ф*(z) – замкнутой системы, Фе*(z) – системы по ошибке. Параметры Т, Т1, τ1, К0, γ входят в выражения передаточных функций в общем виде, т. е. в буквенном виде. Знак «*» будет относиться к передаточным функциям импульсной системы.
2) Найти интервал изменения коэффициента передачи К0, при котором система будет устойчива: K0”≤K0≤K’. Для дальнейших исследований выбрать значение K0=0.5K0’
3) Построить графики логарифмических частотных характеристик разомкнутой импульсной системы L*(λ) и φ*(λ) при заданных значениях Т, Т1, τ1, γ и выбранном K0. По графикам определить запасы устойчивости системы по модулю ∆L* и фазе ∆φ*.
4) Определить ошибку системы по скорости еск при входном воздействии v(t)=t (скачок по скорости), а также первые два коэффициента ошибок с0 и с1.
5) Вычислить переходной процесс в системе при воздействии v(t)=1 (скачок по положению.
Исходные данные:
Таблица 2. Анализ одноконтурного замкнутого импульса
Номер варианта | γ | T | T1 | τ1 |
10 | 0.3 | 0.1 | 0.1 | 0,05 |
Анализируется одноконтурная замкнутая импульсная САУ, состоящая из непрерывной части (НЧ) и импульсного элемента (ИЭ), формирующего прямоугольные импульсы длительностью τ=γТ, где Т -период дискретизации, 0≤γ≤1. Исходные данные для расчетов приведены в таблице 2. Передаточная функция непрерывной части имеет вид:
Импульсный элемент представляется в виде идеального ключа и формирующего устройства с передаточной функцией:
Структурная схема системы представлена на рис. 2.1. В табл. 2 Т, Т1, τ -постоянные времени имеют размерность секунды, К0 - коэффициент передачи НЧ имеет размерность сек-1 и выбирается далее.
Рис 2.1 Структурная схема линейной импульсной системы
1.
Для нахождения передаточной функции разомкнутой импульсной САУ W*(z) находим передаточную функцию приведенной непрерывной части:
К W(s) применяется Z-преобразование и получается передаточная функция импульсной системы W*(z) = Z{W (s)}. Преобразуем W0(s) к виду:
Представим W0(s) в виде суммы двух слагаемых
Применим к W0(s) Z-преобразование
Полученную передаточную функцию в конечном виде можно представить следующим образом:
где обозначено
Передаточные функции замкнутой системы находятся по выражениям:
2.
Устойчивость системы определяется корнями характеристического уравнения замкнутой системы D*(z) = l + W*(z) = 0, которое для нашего случая будет иметь вид:
В соответствии с алгебраическим критерием замкнутая система будет устойчива при выполнении неравенств
В неравенстве при известных значениях γ, Т, τ1, Т1 входит величина К0. Таким образом, можно выделить отрезок значений К0"<К0 <К0, при которых система будет устойчива и далее принять К0 = 0.5К'0. Условия устойчивости будут:
Перейти на страницу: 1 2
Другое по теме:
Структурный синтез D-элементов и лестничных arc-схем В многочисленных публикациях, посвященных теории электрических фильтров, показано, что низкой параметрической чувствительностью обладают LC-цепи лестничной структуры Именно это их свойство обеспечивает построение высокостабильных о ...