Технология цифровой связи

Проектирование цифровой линии

Расчет общих факторов температурных измерений и термопреобразователей сопротивления

а) влияние теплового потока по арматуре термометра (т. е. влияние теплопроводности);

б) влияние лучеиспускания;

в) влияние положения измерителя температуры относительно потока среды;

г) динамические погрешности из-за тепловой инерции.

Влияние теплопроводности

Если измеритель температуры погружен в среду целиком, то через него не подводится и не отводится тепло к месту измерения.

В большинстве случаев термопреобразователь сопротивления находится на границе двух сред с разными температурными полями. Поэтому сам термопреобразователь или соприкасающиеся с ним элементы являются каналом теплообмена.

Теплообмен термопреобразователя с измеряемой средой зависит также от условий обтекания, микрогеометрии и цвета поверхности, интенсивности лучистого теплообмена и других конкретных условий.

Существенное значение имеют также масса, поверхность и теплоемкость самого термопреобразователя, определяющие его тепловую инерцию.

Сложный динамический характер теплового взаимодействия термопреобразователя и среды определяет величину погрешности собственно датчика.

Значительные погрешности возникают в термопреобразователях, помещенных в металлический чехол или гильзу. На рис.4.1. показан случай измерения термометром, погруженным в гильзу.

Рассмотрим возникающую здесь погрешность. Обозначим: tн – истинная температура среды; t1 – температура в конце гильзы (показание термометра); t0 –температура гильзы у ее верха; 1 – длина гильзы, м; а – коэффициент теплоотдачи от среды к гильзе, ккал/м2 • ч • град; l – коэффициент теплопроводности материала гильзы, ккал/м * ч • град; f – площадь поперечного сечения гильзы, м2; U = pd, где d – наружный диаметр гильзы, м.

Обозначим через m,

тогда

Влияние лучеиспускания

При измерениях в газовых средах часто вблизи термопреобразователя находятся поверхности, температура которых заметно отличается от температуры преобразователя. В этом случае между этими поверхностями и термометром происходит лучистый теплообмен, описываемый законом Стефана-Больцмана. Если температура окружающих поверхностей выше температуры термометра, то термометр получит путем лучеиспускания дополнительное количество тепла и тепловое равновесие будет поддерживаться на более высоком уровне.

Наличие лучеиспускания всегда вносит погрешность в измерения температур, но устранить его полностью зачастую оказывается сложно.

Рассмотрим влияние лучеиспускания на термометр, погруженный в трубопровод (рис.4.2.). Считая, что тепловое равновесие установилось, обозначим:

tср – температура среды в трубопроводе, °С;

tт – температура термометра, °С;

tст – температура стенки трубы, °С;

Соответствующие абсолютные температуры (t+273,15) обозначим через Тср; Тт; Тст (0К).

,

где a1, – коэффициент теплоотдачи от среды к термометру, ккал/м2*час*град;

С1 – константа лучеиспускания для материала чехла термометра, ккал/м2*ч*град4.

Влияние скорости потока

В неподвижной среде недостаточный теплообмен среды с термометром может быть источником погрешностей измерения. Наличие интенсивного омывания чувствительной части термометра потоком способствует правильному измерению. Можно в среднем считать, что для умеренных скоростей (примерно до 70 м/сек) Перейти на страницу: 1 2 3


Другое по теме:

Расчет режимов и характеристик электрических цепей с операционным усилителем 1. 1. Для заданной схемы (рис 1.) рассчитать передаточную функцию цепи в смысле коэффициента передачи напряжения H(p). Схема электрическая: Исходные данные: R1=R 2=10кОм; C1=0.008мкФ; C2 =0,00 ...