Технология цифровой связи

Проектирование цифровой линии

Модели проявочного оборудования

Рис. 2 Структура процессора «Multiline» для проявления пленок

На входе в процессор транспортировочная система валиков принимает и аккуратно проводит пленку через все четыре секции с одинаковой скоростью, а специальные направляющие обеспечивают плавность перехода с одной секции в другую. После того, как пленка выходит из процессора, она попадает в корзину для пленки 15.

Секция проявления и фиксажа.

В секции проявления 7 скрытое изображение после экспонирования проявляется, в секции фиксажа 8 оно закрепляется, а непроэкспонированный галогенид серебра растворяется. Секции проявления и фиксажа идентичны, за исключением несущих каркасов, на которых закрепляются нагреватели и термостаты для поддержки постоянной температуры.

Детектор уровня в каждом резервуаре предотвращает лишнюю затрату реактивов. В обеих секциях для поддержки постоянной температуры раствор циркулирует с помощью циркуляционных насосов. В случае переполнения растворы перетекают в контейнеры для отработанных растворов 18 с помощью совмещенной системы шлангов переполнения и слива. Каждый резервуар оборудован специальной крышкой, которая предотвращает образование конденсата под верхней панелью и окисление реактивов.

Секция промывки.

В секции промывки 10 с поверхности пленки удаляются оставшиеся реактивы. Поток воды в резервуаре контролируется соленоидным клапаном 10 и системой переполнения/слива, управление которой осуществляется с верхней панели 14 (см. рис. 3).

Секция сушки.

В секции сушки 11 с поверхности пленки удаляется влага, после чего пленку можно сразу же брать в руки. В секции установлен центробежный вентилятор 14 с вмонтированным нагревателем и распределительные воздухопроводы один над одним под несущим каркасом.

Система подкачки.

Два подкачивающих насоса 12, подсоединенные к двум внешним контейнерам 16, автоматически прибавляют проявитель и фиксаж в резервуары, чтобы компенсировать затрату реактивов в процессе работы. Система также прибавляет проявитель, чтобы восстановить потерю активности реактива от окисления.

Управлять работой подкачивающих насосов можно вручную с помощью контрольной панели 5. Сенсоры на входе в процессор закрывают цепь контроля подкачки в тот момент, когда пленка будет внутри. Цепь также закрывается, если открыто загрузочное устройство дневного света. Если открыто загрузочное устройство повторной промывки, то включение подкачивающих насосов не происходит.

Транспортировочная система.

Эта система (рис. 3) состоит из главного двигателя, соединенного с приводной системой червячного механизма.

Рис. 3. Транспортировочная система процессора «Мultilіnе»: 1 — путь плёнки в процессоре; 2 — входное отверстие; 3 — направляющая при переходе из секции проявления в секцию фиксажа; 4 — направляющая из секции фиксажа в секцию сушки; 5 — направляющая в секцию сушки; 6 — ролики протягивания пленки; 7 — механизм протягивания пленки в секцию сушки; 8 — ролики из лёгкого материала; 9 — нижние направляющие; 10 — направляющие для пленки

Рис. 4. Основные компоненты процессора «Multiline»

Приводная система вращает валики каждого несущего каркаса, которые вместе с направляющими протягивают пленку через секции процессора.

В секциях, заполненных жидкостью, нижние валики изготовлены из легкого материала, который дает возможность им «плавать». Благодаря этому обеспечивается мягкое транспортирование пленки. Накатывающие валики на входе в секцию сушки удаляют влагу с поверхности пленки и отбрасывают воду назад в секцию промывки. Перейти на страницу: 1 2 3 4 5


Другое по теме:

Реализация устройства контроля переданной информации с использованием модифицированного кода Хемминга Вычислительная техника развивалась такими быстрыми темпами, что давно уже принято говорить о поколениях вычислительных машин. За 30 лет своего бурного развития микропроцессорные системы прошли путь от специализированных комплектов интегральных схем ...