Технология цифровой связи

Проектирование цифровой линии

Анализ гомогенного и гетерогенного зарождения новой фазы

Таким образом,

Все выкладки относятся к гомогенному образованию зародышей, которое редко реализуется на практике.

Модель гетерогенного образования зародышей отличается от гомогенной тем, что вводится геометрический фактор, определяемый межфазовыми взаимодействиями в системе подложка — зародыш— пар или подложка — зародыш — жидкость. Если свойства зародыша изотропны, то образуется куполообразный зародыш, если анизотропны —другие конфигурации зародышей (рис. 3.2).

Геометрический фактор вводится в уравнение (3.5) в виде функций поверхности соприкосновения зародыша с соответствующими фазами и объема зародыша fs(ц) и fv (ц), зависящих от контактного угла ц (для жидкостей — угла смачивания):

Эти функции описывают геометрическую конфигурацию зародыша. Значение ц определяется при равновесии поверхностных энергий:

Где упл-пар, ук-пр, ук-пар —удельные межфазовые поверхностные энергии поверхностей раздела пластина — пар, конденсат — пластина и конденсат —пар.

Для куполообразного зародыша

где

fsпл (ц)—функция поверхности соприкосновения зародыша с пластиной; fsпар (ц) —функция поверхности соприкосновения зародыша с паровой фазой.

Свободную энергию образования критического зародыша найдем из условия максимума уравнения (3.15):

Где

функция контактного угла f(ц) для куполообразного зародыша (рис. 3.3) характеризует взаимодействие конденсата с пластиной. При ц→0 f (ц)→0, ДGкр→0 и образование зародышей облегчается. При ц→1800 f (ц)→1, ДGкр растет до максимума и образование зародышей затрудняется (случай гомогенного зарождения новой фазы). Следовательно, уравнение (3.2) является предельным случаем образования зародышей, когда оно протекает с максимальной трудностью. Таким образом, свободная энергия гетерогенного меньше свободной энергии гомогенного образования зародышей. Кроме того, механизм гомогенного и гетерогенного образования зародышей (рис. 3.4) различен. При гомогенном образовании рост происходит только за счет реакции поверхности зародыша с паровой фазой (механизм х3), при гетерогенном — за счет поверхностной диффузии (механизм х2), т. е. х2>>х3. При очень низких температурах пластины х3>х2.

Скорость гомогенного образования зародышей в случае прямого осаждения из пара

где nадс — концентрация молекул, адсорбированных на поверхности; ДGк.п — свободная энергия конденсации из пара.

Скорость образования зародышей при преобладании поверхностной диффузии

где а — длина скачка диффундирующей молекулы к поверхности зародыша; j — величина, обратная числу возможных направлений скачков; v —частота поверхностных колебаний; ДGп.д — свободная энергия активации поверхностной диффузии; частота скачков диффундирующей молекулы.

При температурах пластины, позволяющих реализовать оба механизма образования зародышей, скорость образования зародышей равна сумме скоростей х2 и х3: Перейти на страницу: 1 2 3 4


Другое по теме:

Качество линейных непрерывных САУ и методы их оценки 310181 замкнутый линейный квадратичная интегральная ошибка Устойчивость является необходимым, но недостаточным условием работоспособности САУ. К ним предъявляют определенные требования качества. Наиболее полной характеристикой качества систем ...