Промышленные объекты управления (ОУ), как правило, представляют собой сложные агрегаты со многими входными и выходными величинами, характеризующими технологический процесс. Зависимости выходных величин от входных, как правило, нелинейные, и изменение одной из них приводит к изменению других. Таким образом, создается сложная система взаимозависимостей, которую трудно, а подчас и невозможно строго математически описать.
Большинство промышленных объектов описываются передаточными функциями, имеющими большое время запаздывания τа и большие постоянные времени Та.
Известно, что чем больше время запаздывания, тем труднее управлять объектом. Качество регулирования в будущей САУ зависит от отношения τа/ Та. Чем оно больше, тем труднее управлять, поэтому при описании объекта (τа/ Та)≤1.
Для большинства объектов τа/ Та так велико, что удовлетворяющее нас качество в системе в одноконтурной САУ получить практически невозможно. В этом случае нужно усложнить закон регулирования. На практике идут не на усложнение закона регулирования, а на усложнение структуры САУ.
В настоящее время в практике автоматизации непрерывных производственных процессов применяются следующие виды многоконтурных схем: каскадные системы, комбинированные САУ и многосвязные системы. Расчет оптимальных параметров управляющих устройств перечисленных многоконтурных систем является довольно сложной задачей. Для упрощения на практике определяют лишь приближенные значения этих параметров.
Методика приближенных расчетов основана на предположении о возможности расчета отдельных контуров системы независимо друг от друга. Для этих целей, исходная структурная схема управления подвергается различным структурным преобразованиям с тем, чтобы выделить отдельные контуры с различными частотами и рассчитывать их обычными методами независимо друг от друга, тем самым получают более сложный алгоритм управления комбинацией ограниченного числа типовых П -, ПИ-, ПИД законов регулирования.
Комбинированные системы регулирования рекомендуется строить, если на систему действуют значительные внешние возмущения и если представляется возможность выделить и измерить главные из них.
Система содержит минимум два контура регулирования. Разомкнутый контур с преобразователем служит для компенсации основного возмущения (или возмущений) f; замкнутый контур с регулятором окончательно корректирует процесс, отрабатывая ошибки компенсации первого контура и другие неучтенные возмущения, многие из которых практически не могут быть контролируемыми (помехи). Комбинированное управление сочетает в себе два принципа регулирования: регулирование «по возмущению» и регулирование «по отклонению».
- Аппроксимация переходной характеристики объекта по управляющему каналу
- Аппроксимация переходной характеристики объекта по возмущающему каналу
- Выбор ПИ-алгоритма управления
- Расчет параметров ПИ-регулятора по параметрам объекта по регулирующему каналу графоаналитическим методом
- Расчет параметров ПИ-регулятора частотным методом на ЭВМ
- Построение переходных процессов в системе по задающему воздействию при двух вариантах настройки регулятора
- Получение передаточной функции физически реализуемого компенсатора, обеспечивающего наилучшую компенсацию возмущения
- Определение показателей качества в системе по возмущающему воздействию
- Составление структурной схемы САУ с НЦУ и запись алгоритма цифрового управления
- Построение САУ с использованием методов нечёткой логики
- Структурная схема комбинированной САУ с нечётким компенсатором
- Расчёт управляющего воздействия нечёткого компенсатора
Другое по теме:
Проектирование системы климат-контроля автомобиля Целью данного курсового проекта является разработка собственной системы климат-контроля автомобиля. Полученные знания в ходе изучения курса "Проектирование микропроцессоров" позволяют создать устройство с использованием сложных цифровы ...